
Raspberry Pi
with Python

Hans-Petter Halvorsen

https://www.halvorsen.blog

Free Textbook with lots of Practical Examples

https://www.halvorsen.blog/documents/programming/python/

https://www.halvorsen.blog/documents/programming/python/

Additional Python Resources

https://www.halvorsen.blog/documents/programming/python/

https://www.halvorsen.blog/documents/programming/python/

• Overview of Raspberry Pi
• Python on Raspberry Pi
–Using the Thonny Python Editor

• Python
–Basic Python Programming Examples

• Python Libraries/Packages
• GPIO with Examples

Contents

Raspberry Pi

https://www.raspberrypi.org

Raspberry Pi is a tiny (about 9x6cm), low-cost ($35+),
single-board computer that supports embedded Linux
operating systems

The recommended
Operating System is called
Raspberry Pi OS (Linux
based)

https://www.raspberrypi.org/

Raspberry Pi

microSD Card
(the Back)

GPIO Pins

microHDMI x 2Power Supply (USB C)

Ethernet

USB A x 4
Camera

Connector

• Raspberry Pi
• microSD Card (+ Adapter)
• Power Supply
• microHDMI to HDMI Cable
• Monitor
• Mouse
• Keyboard

What Do you Need?

Raspberry Pi OS
• In order make your Raspberry Pi up and running you need

to install an Operating System (OS)
• The OS for Raspberry Pi is called “Raspberry Pi OS“

(previously known as Raspbian)
• Raspberry Pi runs a version of an operating system called

Linux (Windows and macOS are other operating systems).
• To install the necessary OS, you need a microSD card
• Then you use the “Raspberry Pi Imager“ in order to

download the OS to the microSD card.
https://www.raspberrypi.org/software/

https://www.raspberrypi.org/software/

Start using Raspberry Pi

• Put the microSD card into the Raspberry Pi
• Connect Monitor, Mouse and Keyboard
• Connect Power Supply
• Follow the Instructions on Screen to setup Wi-Fi

Raspberry Pi OS

Remote Access
1. Install XRDP

– XRDP is a free and open-source implementation of Microsoft RDP
(Remote Desktop Protocol) server. Install it by enter the following:

– sudo apt-get install xrdp

2. Open Remote Desktop Connection (RDC) on
your Windows Computer. RDS is also
available for macOS

– Enter Computer Name or IP Address
– Default UserName is “pi“ and default Password is “raspberry“ (unless

you have changed it)

https://en.wikipedia.org/wiki/Xrdp

https://en.wikipedia.org/wiki/Xrdp

Python on Raspberry Pi
• The Raspberry Pi OS comes with a

basic Python Editor called ”Thonny“

https://www.raspberrypi.org/documentation/usage/python/

You can install and use others if you want

https://www.raspberrypi.org/documentation/usage/python/

Hans-Petter Halvorsen

https://www.halvorsen.blog

Python Programming

• Python is a fairly old Programming Language (1991)
compared to many other Programming Languages
like C# (2000), Swift (2014), Java (1995), PHP (1995).

• Python has during the last 10 years become more and
more popular.

• Today, Python has become one of the most popular
Programming Languages.

• The Raspberry Pi OS comes with a basic Python Editor
called “Thonny“

Python with Raspberry Pi

https://www.raspberrypi.org/documentation/usage/python/

https://www.raspberrypi.org/documentation/usage/python/

Hello World
Here you also see the
“Thonny“ Python Editor

Free Textbook with lots of Practical Examples

https://www.halvorsen.blog/documents/programming/python/

https://www.halvorsen.blog/documents/programming/python/

Variables in Python
> x = 3
> x
3

Creating variables: We can use variables in a calculation like this:
> x = 3
> y = 3*x
> print(y)

We can implement the formula
𝑦(𝑥) = 𝑎𝑥 + 𝑏 like this:

> a = 2
> b = 4

> x = 3
> y = a*x + b
> print(y)

𝑦(𝑥) = 2𝑥 + 4

A variable can have a short name (like x and y) or a more descriptive name (sum, amount, etc).
You don need to define the variables before you use them (like you need to to in, e.g., C/C++/C).

Calculations in Python

> a = 2
> b = 4

> x = 3
> y = a*x + b
> print(y)

> x = 5
> y = a*x + b
> print(y)

We can use variables in a calculation like this:
𝑦(𝑥) = 2𝑥 + 4

𝑦(3) = ?

𝑦(5) = ?

Math in Python
If we need only the sin() function, we can do like this:

If we need a few functions, we can do like this:

If we need many functions, we can do like this:

from math import sin

x = 3.14
y = sin(x)

from math import sin, cos

x = 3.14
y = sin(x)
print(y)

y = cos(x)
print(y)

from math import *

x = pi
y = sin(x)
print(y)

y = cos(x)
print(y)

…

import math
x = 3.14
y = math.sin(x)
print(y)

We can also do like this:

If-Else

a = 5
b = 8

if a > b:
print("a is greater than b")

else:
print("b is greater than a or a and b are equal")

If you have 2 conditions that you need to check, you can use If – Else:

Arrays
An array is a special variable, which can hold more than one value at a time

Python does not have built-in support for Arrays, but Python Lists can be used instead.

data = [1.6, 3.4, 5.5, 9.4]

For more advanced use of Arrays in Python you will have to import a library, like the NumPy library.

N = len(data)

Length of an Array (List):
x = data[2]

Get a specific element (Indexing):

data[2] = 7.3
Change a specific element:

data.append(11.4)

Add a new value to the end of the Array (List):

Example:

Using Arrays in Functions

from statistics import *

data = [1.6, 3.4, 5.5, 9.4]

m = mean(data)
sd = stdev(data)
datamin = min(data)
datamax = max(data)

Example:

Note! statistics is a sub library in the Python Standard Library

Using Arrays in Functions

For Loops
A For loop is used for iterating over a sequence. I guess all your programs will use
one or more For loops. So if you have not used For loops before, make sure to learn
it now.

cars = ["Ford", "Toyota", "Tesla"]

for car in cars:
print(car)

Note! Python uses
indentation (spaces)

Other Programming
Languages uses curly
brackets {} or Begin .. End

Example:

data = [1.6, 3.4, 5.5, 9.4]

for x in data:
print (x)

Example:

Array (List)
of Strings

Array (List)
of Numbers

For Loops
The range() function is handy to use in For Loops:
N = 10

for x in range(N):
print(x)

The range() function returns a
sequence of numbers, starting
from 0 by default, and increments
by 1 (by default), and ends at a
specified number.

You can also use the range() function like this:
start = 4
stop= 12 #but not including

for x in range(start, stop):
print(x)

Or like this:

While Loops
i = 1
while i < 10:
print(i)
i = i + 1

data = [1.6, 3.4, 4.4, 5.5, 9.4]

max = 5

i = 0
while data[i] < max:
print(data[i])
i = i + 1

1.6
3.4
4.4

1
2
3
4
5
6
7
8
9

While Loops
data = [1.6, 3.4, 4.4, 5.5, 9.4]

N = len(data)

sum = 0

i = 0
while i < N:
sum = sum + data[i]
i = i + 1

print(sum)

24.3

Create Functions
def add(x,y):

z = x + y
return z

Create the Function:

def add(x,y):
z = x + y
return z

Using the Function:
x = 2
y = 5

z = add(x,y)

print(z)

Using the Function within the same script:

Create Functions
• Although you can mix functions and code in one file, it is much

better to create the functions in separate .py files
• In that way you can easily reuse the function in different Python

scripts

We start by creating a separate
Python File, e.g., “myfunctions.py“
for the function:

def average(x,y):

return (x + y)/2

myfunctions.py:

Next, we create a new Python File (e.g., “testaverage.py“)
where we use the function we created:1

2

from myfunctions import average

a = 2
b = 3

c = average(a,b)

print(c)

Free Textbook with lots of Practical Examples

https://www.halvorsen.blog/documents/programming/python/

https://www.halvorsen.blog/documents/programming/python/

Additional Resources
• Python Programming:

https://www.halvorsen.blog/documents/programming/python/

• Python Programming Tutorial: Getting Started
with the Raspberry Pi
https://learn.sparkfun.com/tutorials/python-programming-tutorial-
getting-started-with-the-raspberry-pi/

https://www.halvorsen.blog/documents/programming/python/
https://learn.sparkfun.com/tutorials/python-programming-tutorial-getting-started-with-the-raspberry-pi/

Python Libraries/
Packages
Hans-Petter Halvorsen

https://www.halvorsen.blog

Python Packages/Libraries
• Rather than having all its functionality built into its core,

Python was designed to be highly extensible.
• This approach has advantages and disadvantages.
• A disadvantage is that you need to install these packages

separately and then later import these modules in your code.
• Some important packages are:

– NumPy - NumPy is the fundamental package for scientific
computing with Python

– Matplotlib – With this library you can easily make plots in
Python

Python Packages with Thonny
Tools -> Manage packages…

There are multiple ways to install Python Libraries/ Packages on Raspberry Pi
• apt: Some Python packages can be found in the Raspberry Pi OS archives

and can be installed using apt. Example
sudo apt update
sudo apt install python3-picamera

• pip: Not all Python packages are available in the Raspberry Pi OS archives,
and those that are can sometimes be out-of-date. If you can't find a suitable
version in the Raspberry Pi OS archives, you can install packages from the
Python Package Index (PyPI). To do so, use the pip tool. Example:

sudo pip3 install libraryname

• piwheels: piwheels is a Python package repository specifically for the
Raspberry Pi

Installing Python Packages

https://www.raspberrypi.org/documentation/linux/software/python.md

https://www.raspberrypi.org/documentation/linux/software/python.md

• A Python Library for Numerical
Operations, Arrays, etc.
• The NumPy Python Library is installed

on the Raspberry Pi OS by default
• https://numpy.org

NumPy

https://numpy.org/

NumPy Example
import numpy as np

x = 3

y = np.sin(x)

print(y)

Basic NumPy Example: In this example we use both the math module in the
Python Standard Library and the NumPy library:

import math as mt
import numpy as np

x = 3

y = mt.sin(x)
print(y)

y = np.sin(x)
print(y)

As you see, NumPy also have also similar functions
(e.g., sim(), cos(), etc.) as those who is part of the
math library, but they are more powerful

• Typically you need to create some plots or charts. In
order to make plots or charts in Python you will need
an external library. The most used library is
Matplotlib

• Matplotlib is a Python 2D plotting library
• Here you find an overview of the Matplotlib library:

https://matplotlib.org
• The NumPy Python Library is NOT installed on the

Raspberry Pi OS by default, so you must manually
install it

Matplotlib

https://matplotlib.org/

Matplotlib Example
import numpy as np
import matplotlib.pyplot as plt

xstart = 0
xstop = 2*np.pi
step = 0.1

x = np.arange(xstart, xstop, step)
y = np.sin(x)

plt.plot(x, y)
plt.xlabel('x')
plt.ylabel('y=sin(x)')
plt.show()

Plotting a Sine Curve

Matplotlib Example

• SciPy has many functions for
Mathematics and Scientific
Computing
• https://scipy.org
• https://docs.scipy.org/doc/scipy/refe

rence/

SciPy

https://scipy.org/
https://docs.scipy.org/doc/scipy/reference/

Install SciPy with Thonny

Python from
Command Line

Hans-Petter Halvorsen

https://www.halvorsen.blog

Python from Command Line
• You can write a Python file in a standard editor
• Then you run it as a Python script from the

command line.
• Just navigate to the directory where the file is

saved in (use commands cd and ls for navigation)
python3 hello.py

Python from Command Line

Python Shell from Terminal
Enter python3 in the Terminal

GPIO

Hans-Petter Halvorsen

https://www.halvorsen.blog

The GPIO pins are Digital Pins which are either True
(+3.3V) or False (0V). These can be used to turn on/off
LEDs, etc.
The Digital Pins can be either Output or Input.
In addition, some of the pins also offer some other
Features:
• PWM (Pulse Width Modulation)
Digital Buses (for reading data from Sensors, etc.):
• SPI
• I2C

GPIO Features

GPIO

A powerful feature of the Raspberry Pi is the GPIO (general-purpose input/output) pins.
The Raspberry Pi has a 40-pin GPIO header as seen in the image

GP
IO

GPIO with Python

Hans-Petter Halvorsen

https://www.halvorsen.blog

• You can make all kinds of Python program on your Raspberry Pi
• But you could have used your ordinary desktop/laptop PC for

that
• The UNIQUE thing with Raspberry Pi compared to an ordinary

PC is the GPIO connector
• With GPIO you can connect LEDs, Sensors, control Motors, etc.
• You typically use Python in order communicate with GPIO

connector
• That what's makes the combination Raspberry Pi + Python

UNIQUE!

Raspberry Pi GPIO and Python

• In order to use and communicate
with the GPIO Pins we typically use
the Python Programming Language
• We can turn on LEDS, read data from

different types of Sensors, etc.

GPIO in Python

https://www.raspberrypi.org/documentation/usage/gpio/python/

https://www.raspberrypi.org/documentation/usage/gpio/python/

• The GPIO Zero Python Library can be used to communicate
with GPIO Pins

• The GPIO Zero Python Library comes preinstalled with the
Raspberry Pi OS (so no additional installation is necessary)

Resources:
• https://www.raspberrypi.org/documentation/usage/gpio/p

ython/
• https://pypi.org/project/gpiozero/
• https://gpiozero.readthedocs.io/en/stable/
• https://gpiozero.readthedocs.io/en/stable/recipes.html

GPIO Zero

https://www.raspberrypi.org/documentation/usage/gpio/python/
https://pypi.org/project/gpiozero/
https://gpiozero.readthedocs.io/en/stable/
https://gpiozero.readthedocs.io/en/stable/recipes.html

RPi.GPIO
• Rpi.GPIO is a module controlling the GPIO pins on the

Raspberry Pi
• RPi.GPIO is a more “low-level“ Python Library than

GPIO Zero. Actually, GPIO Zero is using RPi.GPIO
• The RPi.GPIO Python Library comes preinstalled with

the Raspberry Pi OS (so no additional installation is
necessary)

https://pypi.org/project/RPi.GPIO/

https://pypi.org/project/RPi.GPIO/

Necessary Equipment
• Raspberry Pi
• Breadboard
• LEDs
• Push Buttons
• Resistors
• Wires (Jumper Wires)

Breadboard
A breadboard is used to wire
electric components together

Resistors
Resistance is measured in Ohm (Ω)

Resistors comes in many sizes, e.g., 220Ω , 270Ω,
330Ω, 1kΩm 10kΩ, ...

The resistance can be found using Ohms Law

𝑈 = 𝑅𝐼

Electrical symbol:https://en.wikipedia.org/wiki/Resistor

https://en.wikipedia.org/wiki/Resistor

Resistor Colors

http://www.allaboutcircuits.com/tools/resistor-color-code-calculator/Resistor Calculator:

You can also use a Multimeter

http://www.allaboutcircuits.com/tools/resistor-color-code-calculator/

LED

Hans-Petter Halvorsen

https://www.halvorsen.blog

Necessary Equipment
• Raspberry Pi
• Breadboard
• LED
• Resistor, 𝑅 = 270Ω
• Wires (Jumper Wires)

Setup and Wiring

LED

[Wikipedia]

Breadboard Wiring

Make sure not to short-circuit
the components that you
wire on the breadboard

LED Example

GPIO16 (Pin 36)

GND (Pin 32)

Ra
sp

be
rr

y
Pi

 G
PI

O
 P

in
s

Breadboard

LED

R=270Ω

Why do you need a Resistor?
If the current becomes too large, the LED will be destroyed. To prevent
this to happen, we will use a Resistor to limit the amount of current in
the circuit.

A LED typically need a current like 20mA (can be found in the LED Datasheet).
We use Ohm’s Law:

𝑈 = 𝑅𝐼
Arduino gives U=5V and I=20mA. We then get:

𝑅 =
𝑈
𝐼

The Resistor needed will be 𝑅 = !"
#.#%&

= 250Ω. Resistors with R=250Ω is not so common, so
we can use the closest Resistors we have, e.g., 270Ω

What should be the size of the Resistor?

LED Example
from gpiozero import LED
from time import sleep

pin = 16
led = LED(pin)

while True:
led.on()
sleep(1)
led.off()
sleep(1)

https://www.raspberrypi.org/documentation/usage/gpio/python/

This Example “Runs for ever“

https://www.raspberrypi.org/documentation/usage/gpio/python/

LED Example

LED Example
from gpiozero import LED
from time import sleep

pin = 16
led = LED(pin)

N = 10
for x in range(N):

led.on()
sleep(1)
led.off()
sleep(1)

This example turns a LED on/off 10 times

Additional Python Resources

https://www.halvorsen.blog/documents/programming/python/

https://www.halvorsen.blog/documents/programming/python/

Hans-Petter Halvorsen

University of South-Eastern Norway
www.usn.no

E-mail: hans.p.halvorsen@usn.no
Web: https://www.halvorsen.blog

http://www.usn.no/
mailto:hans.p.halvorsen@usn.no
https://www.halvorsen.blog/

